El Sol y la Tierra como agujeros negros

En ciencia hay preguntas que pueden resultar, en un principio, un tanto descabelladas, incluso ociosas o sin sentido. Sin embargo, quien piense así poca idea tiene acerca de cómo funciona o qué es realmente la ciencia. No hay pregunta irrelevante, no existen cuestiones triviales, la frontera del conocimiento siempre está más allá de nuestra curiosidad.

Si algo caracteriza a este blog es que en él se plantean preguntas de estas a las que aludo en el párrafo anterior. Pero aún hay más, dichas cuestiones van sobre todo dirigidas a la gente más joven (que no cunda el pánico, a los mayores también os quiero), a los estudiantes o a los chavales con una mínima curiosidad. Con ellas pretendo que puedan salirse de los ambientes y contextos excesivamente restringidos a que se encuentran sujetos en sus clases, donde han de ceñirse a unos programas enormemente estereotipados, siempre con los mismos ejemplos, monótonos ejercicios donde abundan planos inclinados y poleas, cuerdas, muelles y otras cosas exasperantemente aburridas y que no logran captar sus intereses. Además, las cuestiones que plantea El Tercer Precog sirven para que esos chavales puedan aplicar las mismas leyes físicas que estudian en sus clases pero a casos prácticos mucho más estimulantes, más desafiantes y en los que se pueden desenvolver con mayor entusiasmo.

Entre estos problemas o ejercicios, uno que suele aparecer profusamente en los libros de texto es el que tiene que ver con el tiempo de viaje que emplearía una persona que se lanzase a través de un túnel que atravesara la Tierra a lo largo de un diámetro (y que ya traté en mi libro La guerra de dos mundos). La forma usual de resolver la cuestión consiste en determinar que el tipo de movimiento seguido por el viajero (un ejemplo cinematográfico reciente de esta situación lo podéis encontrar en la película de 2012 Desafío total (Total Recall, 2012)) a lo largo de su caída es lo que los físicos llamamos un movimiento armónico simple. Esto significa que la aceleración con la que cae la persona varía proporcionalmente a su distancia al centro de la Tierra. Así, cuanto más cerca esté del centro de nuestro planeta, tanto menor será dicha aceleración; en cambio, ésta será máxima en la superficie. Si se asume que la densidad de la Tierra permanece constante en todo punto de su interior (corteza, manto y núcleo incluidos) la solución del enigma es prácticamente inmediata, sin más que llevar a cabo unas cuantas manipulaciones algebraicas al alcance de cualquier chaval de Bachillerato. Resultado: 21 minutos y 7 segundos, aproximadamente.

Un procedimiento que solemos seguir muy habitualmente los científicos cuando intentamos resolver un problema es comenzar, en un primer paso, por un caso sencillo, despojado de complicaciones innecesarias, y para el que la solución se pueda obtener de forma más o menos rápida o inmediata. A continuación, el segundo paso consiste en ir añadiendo poco a poco complicaciones que hagan la solución más completa o próxima a la realidad. En el caso expuesto en el párrafo anterior, el del viaje a través de la Tierra, la solución se puede afinar aún más si se abandona la suposición de que la densidad de nuestro planeta es constante. Así, tal y como ya hice en mi libro La guerra de dos mundos, admitiendo un modelo en el que las densidades del manto y el núcleo son constantes pero distintas, el tiempo de viaje hasta el centro es de 19 minutos y 28 segundos, es decir, un minuto y 39 segundos menos que antes.

Puede que a estas alturas muchos os estéis preguntando qué tiene que ver todo lo anterior con el título del post y eso de los agujeros negros, el Sol y la Tierra. Enseguida os cuento.

Veréis, si sois aficionados a la divulgación científica y os da por leer algún que otro libro, blog, web, revista, etc., habréis visto seguramente en más de una ocasión la siguiente pregunta: ¿qué tamaño tendría el Sol si se convirtiese en un agujero negro? La misma cuestión suele aparecer, asimismo, para la Tierra. La respuesta tiene que ver con lo que se denomina el radio de Schwarzschild, que depende de la masa del objeto que se transforma en agujero negro. En el caso del Sol, algo menos de 6 km de diámetro, para la Tierra apenas 2 cm. Si, de alguna manera, fuésemos capaces de comprimir hasta esos tamaños el Sol o la Tierra, éstos se convertirían automáticamente en agujeros negros y ni siquiera la luz podría escapar a sus campos gravitatorios.


Ahora bien, y aquí viene la respuesta a la pregunta de la relación entre el título del post y los viajes a través de un diámetro de la Tierra comentados más arriba. Está muy bien preguntarse por el tamaño del radio de Schwarzschild o, lo que es lo mismo, del horizonte de sucesos, que tendrían el Sol y la Tierra si colapsasen hasta devenir en sendos agujeros negros. Pero, ¿cuánto tiempo tardarían en acontecer semejantes cataclismos? La respuesta a esta pregunta es más sencilla de lo que puede parecer a simple vista. Veamos.

En términos sencillos, una objeto cualquiera se convierte en agujero negro cuando toda su masa comienza a colapsar hasta acabar en su centro, donde la densidad se hace infinita. Pues bien, suponed que aislamos del resto una porción cualquiera de esa masa, y tan pequeña como queramos, que se encuentre sobre la superficie de la Tierra y la dejamos caer libremente hasta el centro del planeta. Visto de esta manera, el tiempo empleado en el colapso total coincidirá con el tiempo que calculamos antes para el viajero en llegar hasta el centro mismo de la Tierra en su viaje a lo largo del hipotético túnel. Por tanto, nuestro querido planeta tardaría exactamente el mismo tiempo calculado antes en convertirse en un agujero negro de 9 mm de radio: alrededor de 20 minutos.

Lo bonito de la física es que todo lo que hemos visto para la Tierra es exactamente igual de válido para el Sol. Efectivamente, si en lugar de haber practicado el túnel a lo largo de un diámetro terrestre lo hubiésemos hecho a lo largo de un diámetro solar, todas las conclusiones obtenidas antes serían trasladables al caso que nos ocupa. Un viaje a lo largo de un diámetro solar llevaría al osado viajero nada menos que 42 minutos hasta su mismo centro, donde encontraría una temperatura aproximada de 15 millones de grados. Con un razonamiento completamente similar al de antes, concluimos que el Sol tardaría también 42 minutos en colapsar hasta convertirse en un agujero negro de 6 km de diámetro.

Pero esto no es todo. Me gustaría deciros aún algo más. ¿Qué pasa si sois un chaval que todavía no se maneja con soltura con las matemáticas que requiere el movimiento armónico simple? Os contaré un secreto, incluso se puede determinar el tiempo del colapso de forma aproximada (un tanto burda, eso sí, por lo que no debéis darle demasiada importancia) con tan sólo conocer la ley de la gravitación universal, la segunda ley de Newton y las definiciones de velocidad y aceleración. ¿Que no? Leed y lo comprobaréis.

Imaginad por un momento que la única fuerza a la que se encuentra sometido el Sol es la gravitatoria (esto es, imaginad que ha dejado de generar energía a base de la fusión nuclear y, por tanto, ha comenzado a colapsar bajo su propio peso). Volved a fijaros en una porción de materia cualquiera situada en la superficie de nuestra estrella. La fuerza gravitatoria a la que está sometida viene dada por la ley de la gravitación universal, ¿correcto? Como esta es la única fuerza en acción, deberá ser igual al producto de la masa de dicha porción por su aceleración de caída hacia el centro (segunda ley de Newton).

F = G M m/R² = m a

donde M y R son, respectivamente, la masa y el radio del Sol.
Por tanto:
a = G M/R²

Ahora bien, como todo chaval sabe, la aceleración se puede expresar como la variación de la velocidad por unidad de tiempo y, a su vez, la velocidad se puede expresar como la variación de la distancia por unidad de tiempo. Con lo cual:

a = R/t²

Igualando las dos expresiones anteriores, se llega inmediatamente a que:

t² = R³/G M

Sustituyendo en ella los valores conocidos de cada uno de los tres parámetros, se obtiene que el tiempo de colapso solar es de unos 27 minutos, segundo arriba o abajo. Evidentemente, debido a la sencillez del modelo asumido, esta cifra se diferencia del cálculo más afinado realizado en el caso de movimiento armónico simple, que resultaba ser de 42 minutos. Para la Tierra, el nuevo valor sería de 13 minutos y 24 segundos, en lugar de los 21 minutos del modelo armónico simple. Para los puntillosos y los que pretendan ir un poquito más allá: el factor de proporcionalidad entre las dos cifras obtenidas con los dos modelos siempre es igual a pi/2. Podéis comprobarlo aquí. Newton rules!


2 comentarios:

  1. Precisamente esta mañana estuve escuchando una charla de un astrónomo chileno sobre esto, y estábamos sorprendidos de pensar en la Tierra convertida en agujero negro del tamaño de una uva...

    Al leer " Esto significa que la aceleración con la que cae la persona varía proporcionalmente a su distancia al centro de la Tierra. Así, cuanto más cerca esté del centro de nuestro planeta, tanto menor será dicha aceleración", me hizo pensar en que si pretendiéramos salir por el otro lado, iríamos acelerando y acelerando hasta llegar a la superficie?

    ResponderEliminar
  2. Gabriela, lo que pasaría es que a medida que te acercases al centro de la Tierra tu aceleración iría disminuyendo (justo en el centro sentirías ingravidez, igual que en una nave espacial en órbita) pero tu velocidad iría aumentando. Es decir, que si partes de la superficie de la Tierra, a medida que vas descendiendo hacia el centro de la Tierra irías cada vez a mayor velocidad hasta alcanzar la máxima justo al pasar por el centro. Una vez allí, irías frenando hasta salir por el otro extremo (las antípodas).

    Un saludo

    ResponderEliminar